Mark scheme - Forces in Action Equilibrium

6		(torque $=$) 350×0.0050 torque $=1.8(\mathrm{~N} \mathrm{~m})$	C0	Answer is 1.75 to 3 sf. Allow: 1.7 (N m)
		Total	1	
7		Resultant / net / total moment $=0$	B1	Allow sum of $/ \Sigma$ moments $=0$ Allow 'total torque $=0$ ' Allow clockwise moment = anticlockwise moment Examiner's Comments Most candidates struggled with this opening question. Only a third of the candidates picked up a mark for 'resultant moment $=0$ '. A small number of candidates spoilt their answers by mentioning momentum rather than moment. A statement for the principle of moments was allowed. Misconception The two most popular incorrect responses for the second condition for equilibrium were: - The system has no external forces acting. - The object must be travelling with constant speed.
		Total	1	
8	a	When (line of force of the) weight falls to the right of the (bottom of the) wheel/AW	B1	
	b	For a body in (rotational) equilibrium the sum of the clockwise moments (about any point) is equal to the sum of the anticlockwise moments (about the same point)	B1	Note Accept $\Sigma /$ total (AW) for sum Examiner's Comments The principle of moments only applies when an object is in equilibrium as required.
		Total	2	
9		B	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. The candidates to demonstrate their knowledge and understanding of physics.

	Total	1	
1	D	1	
	Total	1	
1	C	1	
	Total	1	
1 2	B	1	
	Total	1	
1 3	A	1	
	Total	1	
1 4	D	1	
	Total	1	
	A	1	
	Total	1	
1	D	1	
	Total	1	
1	B	1	
	Total	1	
1	C	1	
	Total	1	
1	A	1	
	Total	1	
0	D	1	Examiner's Comments This question was based on work done by a couple, and as such proved to be quite challenging. The work done by the couple is given by the expression below: work done $=2 \times$ work done by each force $=2 \times\left[0.12 \times \pi \times 8.2 \times 10^{-}\right.$ 2] $=6.2 \times 10^{-2} \mathrm{~J}$ The most popular answers turned out to be either A or C. The

				answer C was for the work done by one of the forces. This question was only accessible to the very top-end candidates. The exemplar 1 below shows an incorrect analysis that led to B being inserted into the answer box. Exemplar 1 The diagram bolow shows a rotating steam generator. The steam ejected from the nozzles provides a couple. The force at each nozzle is 0.12 N . The perpondicular distance betwoen the nozzles is $8.2 \times 10^{-2} \mathrm{~m}$. What is the work done by the forces as the steam generator completes one revolution? D $6.2 \times 10^{-2} \mathrm{~J}$ Your answer B The candidate has either written the equation for work done, or torque of a couple. Substitution shows that the torque has been calculated. Unfortunately, the response of $9.8 \times 10^{-3} \mathrm{~J}$ was there as one of the options. This exemplar shows that if the starting point is incorrect, it can easily lead to what looks like a promising response.
		Total	1	
2 1	a	Triangle with at least two forces shown, one angle marked and the W side being longest The (force) arrows are consistently clockwise or anticlockwise	B1	Allow \quad _for right angle Ignore 'orientation' of the triangle Ignore any other figures Note all three arrows are required
	b	$2 \times T^{2}=4.8^{2} \text { or } 2 T \sin 45^{\circ}=4.8 \text { or } T=$ $4.8 \sin 45^{\circ}$ $\mathrm{T}=3.39(4)(\mathrm{N})$	B1 B1	Note: $\sin 45^{\circ}=\cos 45^{\circ}$ Note: T must be given to at least 3 SF Examiner's Comments This question was good discriminator, where the top-end candidates could demonstrate their powers of analysis. The success in (c) was very much dependent on a well-annotated triangle of forces in (b). Most triangle of forces were workable but lacked detail. Missing labels and incorrect direction of the force arrows were the

3.2 Forces in Action - Equilibrium

				(b) Sketch a labelled triangle of forces diagram for the three forces acting at point X . You do not need to draw this diagram to scale. (c) Show that the tension T in each extended spring is $3: 4 \mathrm{~N}$. $\begin{aligned} & \approx .8 \sin (45)=3.39 N \\ & \approx 3.4 N \end{aligned}$ The triangle of forces in (b) is simply not right. However, in (c), the analysis is correct and shows another plausible method for securing the 2 marks. Again, it is good to see the penultimate value for the force given to more than two significant figures.
	c	$\begin{aligned} & 3.4=24 x \text { or } \quad(x=) \frac{3.4}{24} \text { or }(x=) \\ & 0.14(17)(\mathrm{m}) \\ & \left(E=1 / 2 \times 24 \times 0.1417^{2} \text { or } E=1 / 2 \times 3.4 \times\right. \\ & 0.1417) \\ & \text { energy }=0.24(\mathrm{~J}) \end{aligned}$	C1 A1	Allow the C1 mark for $E=3.4^{2} /(2 \times 24)$ Allow 3.39(4) N No ECF from (c)
		Total	6	
2	i	Force \times perpendicular distance from pivot / fulcrum	B1	
	ii	Clockwise moments = anticlockwise moments about any axis or zero resultant moment about any axis	B1	Allow alternatives such as about a given point
		Total	2	
2 3		(clockwise moment = anticlockwise moment) $2.5 \times 9100=3.5 \times F($ Any subject $)$ $F=6500(\mathrm{~N})$	C1 A1	Examiner's Comments Most candidates effortlessly applied the principle of moments to

					calculate the vertical force at the pillar. A few candidates took moments about the pillar, determined the force on the platform at the wall and then calculated the force F at the pillar using 'net vertical force $=0$ '. Although this was a longer route, it was still worthy of two marks. About a quarter of the candidates scored nothing. The common errors were quoting the moment of the weight about the wall (22750 Nm) as the force F and using 5.0 m instead of 3.5 m in the calculations.	
			Total	2		
		i	arrow from rod wall junction through point where T and line of W cross.	B1		
		ii	require triangle of forces for equilibrium or the forces must pass through a point for equilibrium.	B1		
			Total	2		
			F x 100 or 7.0×16 $F=\frac{7.0 \times 16}{100}=1.1(\mathrm{~N})$	C1 A1	Ignore POT 1.12 Not 1.067	
			Total	2		
			(The resultant of the tensions in the springs is) $W / 4.8(\mathrm{~N})$ Direction: up(wards) / opposite to weight / opposite to W (because the total force in the vertical direction is zero)	B1 B1		
			Total	2		
			Take moments about contact point of rod and wall (because this removes the unknown forces in the calculation). $W \times \\| / 2=F \times /$ or the vertical force is at a distance twice that for the weight.	B1 B1		
			Total	2		
	a		weight $\mathrm{x} y=F x$ $\begin{aligned} & (A L \rho g) \times y=F x \\ & y=\left(\frac{F}{A L \rho g}\right) x \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$	Allow W or mg Wy $=$ Fx or mgy $=F x$	
	b		Straight line of best fit drawn through the data points Gradient $=1.5$	B1 B1	Allow gradient in the range 1.40-1.60	
		ii	$\begin{aligned} & \left(\frac{F}{A L \rho g}\right)=1.5 \\ & \frac{6.8}{6.4 \times 10^{-5} \times 0.90 \times \rho \times 9.81}=1.5 \end{aligned}$	C1 C1 A1	Allow ECF from (i) Allow 8×10^{3} (1 SF answer) Note must be consistent with gradient value from (i)	

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \(\rho=8.0 \times 10^{3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)\) \& \& \\
\hline \& \& Total \& 7 \& \\
\hline 2 \& a \& \[
\begin{aligned}
\& \pi \times \frac{\left(2.9 \times 10^{-2}\right)^{2}}{4} \text { or } \pi \times\left(1.45 \times 10^{-2}\right)^{2} \\
\& 6.605 \times 10^{-4} \mathrm{~m}^{2} \approx 6.6 \times 10^{-4}
\end{aligned}
\] \& M1
A0 \& \\
\hline \& \& \[
\begin{aligned}
\& v=6.6 \times 10^{-4} \times 12.0 \text { or } 7.92 \times 10^{-5}\left(\mathrm{~m}^{3}\right) \\
\& m=400 \times 7.92 \times 10^{-5} \text { or } 0.03168 \mathrm{~kg} \\
\& W=0.31(\mathrm{~N})
\end{aligned}
\] \& \begin{tabular}{l}
C1 \\
C1 \\
A1
\end{tabular} \& Ignore POT \\
\hline \& b \& \[
\begin{aligned}
\& V=\frac{0.31}{1000 \times 9.81} \text { or } 3.16 \times 10^{-5} \\
\& y=\frac{3.6 \times 10^{-5}}{6.6 \times 10^{-4}} \\
\& y=0.048(\mathrm{~m})
\end{aligned}
\] \& \begin{tabular}{l}
C1 \\
C1 \\
A1
\end{tabular} \& Mass of water displaced \(=\frac{0.31}{9.81}=0.316\)
\[
y=\frac{0.316}{1000 \times 6.6 \times 10^{-4}}
\] \\
\hline \& c \& \begin{tabular}{l}
\[
y=0.053 \mathrm{~m}
\] \\
Same weight / mass displaced of oil Smaller density implies larger volume of oil displaced \(y\) is larger OR y a \(1 / \mathrm{p}\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1
\end{tabular} \& \\
\hline \& \& Total \& 11 \& \\
\hline \& \& \begin{tabular}{l}
Weight (of tube), upthrust (and tension I \(F\) are the forces acting on the tube) \\
(For \(t<60 \mathrm{~s}\)) the upthrust (on the tube) increases \\
One detail point from: \\
- Upthrust increases because weight of water displaced increases (up to 60s) or upthrust is constant (after 60s) because weight of water displaced is constant \\
- Constant gradient (before 60 s) because upthrust or volume (of water displaced) or mass (of water displaced) or weight (of water displaced) increases at a constant rate \\
- (After \(t=60 \mathrm{~s} /\) eventually \(/\) finally the) upthrust is constant because tube is (fully) submerged / container is full (of water)
\end{tabular} \& B1
B1

B1 \& | Allow 'buoyancy force' for upthrust throughout, but not just 'buoyancy' |
| :--- |
| Not 'mass' or 'volume' of water displaced |
| Not upthrust = weight of fluid / water displaced |
| Allow 'no more water is displaced after 60 (s) because tube is (fully) submerged' AW |
| Examiner's Comments |
| This question required understanding of upthrust and Archimedes principle. Many candidates gave explanation without mentioning any |

\hline
\end{tabular}

		Total	3	
4				

					Exemplar 3 $\begin{aligned} m & =(50 \times 9.81) \times 0.7 \\ & =343.35 \\ m & =F \times d \\ 343.35 & =1.5 \times F \\ F & =228.9 \\ \sin 30^{\circ} & =\frac{x}{T} \\ & =\frac{228.9}{\sin 30^{\circ}} \\ & =457.8 \mathrm{~N} \approx 460 \mathrm{~N} \end{aligned}$ In this exemplar the candidate has clearly shown the working to answer the question. Initially the candidate has calculated the clockwise moment by multiplying the force (mass of $50(\mathrm{~kg})$ by 9.81) by 0.7 (m). This gains two marks. The candidate's answer could have better if the candidate had written on the left-hand side "clockwise moment" rather than " m ", however, it is implicit from the candidate's working the meaning of " m ". The candidate has then clearly shown that the anticlockwise moment is equal to the clockwise moment and determined correctly the perpendicular force or vertical force. The candidate then correctly relates the force T to $\sin 30^{\circ}$ and the vertical force and evaluates the answer as 457.8 N before indicating that this is approximately 460 N . Including the 457.8 is appropriate in these type of show questions.
			Total	4	
$\begin{aligned} & 3 \\ & 6 \end{aligned}$	a		$\begin{aligned} & F=Q E=Q V / d \quad \text { or } \quad E=5(.0) \times \\ & 10^{4}\left(\mathrm{Vm}^{-1}\right) \\ & F=9.0 \times 10^{-9} \times 4000 / 8.0 \times 10^{-2}(=4.5 \\ & \left.\times 10^{-4} \mathrm{~N}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$F=5.0 \times 10^{4} \times 9.0 \times 10^{-9}$ Examiner's Comments Many lower ability candidates did not appreciate the uniform nature of the electric field between the plates and attempted to use Coulomb's Law.
		ii		$\begin{gathered} \text { B1 x } \\ 2 \end{gathered}$	All correct, 2 marks; 2 correct, 1 mark 1 mark maximum if more than 3 arrows are drawn Ignore position of arrows Allow W or $0.030(\mathrm{~N})$ (not gravity or g)

		weight; arrow vertically downwards tension; arrow upwards in direction of string electric (force); arrow horizontally to the right (not along dotted line)		Allow T Allow F or E or $4.5 \times 10^{-4}(\mathrm{~N})$ or electrostatic Ignore repulsion or attraction Not electric field / electric field strength / electromagnetic Examiner's Comments Most candidates scored a mark for showing the weight and tension forces accurately. Only a small proportion labelled the electric force arrow correctly and drew it as clearly perpendicular to the plates. AfL Do not use the word 'gravity' in place of 'weight'
		$W x=F I$ $0.03 x$ $\begin{aligned} & =4.5 \times 10^{-4} \times 120 \text { or }=4.5 \times 10^{-4} \times 1.2 \\ & x=1.8 \mathrm{~cm} \text { or } x=0.018 \mathrm{~m} \end{aligned}$	M1 M1 A0	Allow any valid alternative approach e.g. M1 deflection angle $\theta=1^{\circ}$ $\mathrm{M} 1 \mathrm{x}=120 \sin \theta$ 1 mark for each side of the equation Examiner's Comments Although most candidates knew the principle of moments, many were unable to apply it correctly in this situation. More practice at this sort of question is recommended.
	b	Electric force/field (strength) increases Ball deflected further from vertical / moves to the right / touches negative plate Ball acquires the charge of the (negative) plate when it touches (Oscillates because) constantly repelled from (oppositely) charged plate	B1 B1 B1 B1 B1	Must be clear which force is increasing Must have the idea of a repeating cycle Examiner's Comments The purpose of this question was to challenge the candidates to use their knowledge of electric fields in a novel practical situation. The word 'oscillate' confused many candidates, who tried to explain why the ball would perform simple harmonic motion.
	c	$\begin{aligned} & I=\text { Qf } \quad \text { or } \quad Q=I t \\ & f=3.2 \times 10^{-8} / 9.0 \times 10^{-9}=3.6(\mathrm{~Hz}) \end{aligned}$	C1 A1	
		Total	12	
3 7		(horizontal component of $F=$) $F \times$ $\cos 20^{\circ}$ $F \cos 20^{\circ} \times 1.30=0.30 \times 40 \times 9.81$	M1	Allow ECF for incorrect trig i.e. use of sine (gives $F=265$) or $\cos (20$ radians) which gives $F=222$ for 2 marks. Allow ECF for incorrect units for angle and incorrect trig $\sin (20$ radians) which gives $F=99(.2)$ for 1 mark

```
3.2 Forces in Action - Equilibrium
```

		$F=96.4$ (N)	A1	
	ii	$\begin{aligned} & R=F \cos 20^{\circ} \text { or } 96(.4) \times \cos 20^{\circ} \\ & (R=) 91(\mathrm{~N}) \end{aligned}$	C1 A1	Allow ECF from (i) Answer is 90.6 (N) to 3 sf if 96.4 used. Answer is $90(.2)(\mathrm{N})$ to 3 sf if 96 used
		Total	5	
3 8	i	4.4-4.6 (N)	B1	
	ii	Weight of cylinder 3.5 cm vertically (judge by eye) Correct closed triangle drawn including T_{A} Correct directions indicated for weight and T_{A} and $T_{\mathrm{A}}=6.4 \pm 0.2(\mathrm{~N})$	M1 M1 A1	
	ii	$39 \pm 1^{\circ}$	A1	Allow ECF from (b)(ii) for trigonometry methods
		Total	5	
3 9		(Clockwise moment) T sin $50^{\circ} \times 0.030$ (Anticlockwise moment) 260×0.40 $T \sin 50^{\circ} \times 0.030=260 \times 0.40$ $T=4500 \mathrm{~N}$	C1 C1 A1	Allow Ncm Allow 4525 N
		Perpendicular distance of weight to P decreases So T must decrease.	M1 A1	
		Total	5	
	i	The charges repel each other (because they have like charges). Each charge is in equilibrium under the action of the three forces: downward weight, a horizontal electrical force and an upwardly inclined force due to the tension in the string.	B1 B1	
	ii	$\begin{aligned} & F=\frac{\left(4.0 \times 10^{-9}\right)^{2}}{4 \pi \varepsilon_{0} \times 0.02^{2}}=3.596 \ldots \times 10^{-4}(\mathrm{~N}) \\ & \text { weight } W=6.0 \times 10^{-5} \times 9.81=5.886 \times \\ & 10^{-4}(\mathrm{~N}) \end{aligned}$	C1 C1	$\text { Correct use of } F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}}$

3.2 Forces in Action - Equilibrium

	ii	$\tan \theta=\frac{3.596 \times 10^{-4}}{5.886 \times 10^{-4}}$	C1	
	ii	angle $\theta=31^{\circ}$	A1	
		Total	6	
	i	$87.4 \cos 50^{\circ}$ or $68.0 \sin 10^{\circ}$ $F=68.0(\mathrm{~N})$	C1	Allow $87.4 \sin 40^{\circ}$ or $68.0 \cos 80^{\circ}$ Allow cosine and sine rules being used, e.g. $\begin{aligned} & F^{2}=68.0^{2}+87.4^{2}-2 \times 68.0 \times 87.4 \times \cos 50^{\circ} \text { or } \\ & F=87.4 \times \sin 50^{\circ} / \sin 80^{\circ} \text { or } F=68.0 \times \sin 50^{\circ} / \sin 50^{\circ} \end{aligned}$ Allow 2 SF answer here Examiner's Comments The question has a clue for making a start on this question. Most candidates did resolve the two tensions in the cables vertically. The majority of the responses were well-structured and demonstrated excellent understanding of vectors. Although not straightforward, many candidates used the correct angle when determining the vertical components of the forces. The correct answer of 68.0 N appeared on most scripts. A small number of candidates got 1 mark for just getting one of the components correct. A very small number of candidates got the correct answer by using trigonometry and triangle of forces. This is not what was expected, but full credit was given for this alternative approach. Correct responses will always score marks, even when the candidates choose not to go along the path designed by the examiners. This different approach is illustrated in the exemplar 6 below. Exemplar 6 Calculate the total vertical force F supplied by cables A and B by resolving the tensions in cables A and B. $\begin{aligned} F^{2} & =A^{2}+B^{2}-2 A B \cos \theta \\ F & =\sqrt{68^{2}+87.4^{2}-2 \times 68 \times 87.4 \times \cos 50} \\ & =\sqrt{4622.329 \ldots} \\ & =67.98 \ldots \mathrm{~N} \\ & \approx 68.0 \mathrm{~N}(3 \mathrm{f}) \end{aligned}$ $F=$ \qquad 68.O.O.... N^{2} [2] The candidate has used a triangle of forces and the cosine rule to determine the net downward. As it happens, the F in this calculation is the weight of the dolphin. However, it is numerically equal to the total upward vertical force. This concise and perfect alternative technique picked up the maximum marks.
	ii	$68=m \times 9.81$ $m=6.9 \text { (kg) }$	C1 A1	Possible ECF from (c)(i) Allow $68=m g$ Note answer to 3 SF is $6.93(\mathrm{~kg})$ Allow $g=9.8$; this gives 6.94 (kg)

				Not $g=10$; this gives $6.8(\mathrm{~kg})$. Only the first C1 mark can be scored Examiner's Comments Almost all candidates correctly used $W=m g$ to determine the mass of the dolphin. Full marks were frequently picked up because of error carried forward (ECF) from (c)(i). There were very few cases of $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ being used; this was penalised because $g=9.81 \mathrm{~m}$ s^{-2} is given in the Data, Formulae and Relationship Booklet.
		$E=\frac{\text { stress }}{\text { strain }}$ (Any subject) (Tension and E increase by the same factor of 1.29) $\text { ratio }=1.0$	C1	Allow $E=\frac{\sigma}{\varepsilon} \text { or } E=\frac{F L}{A x} \text { (Any subject) }$ Allow 1 SF answer Allow 1:1 Examiner's Comments This question on the equation for Young modulus E was wellanswered with most candidates picking up one or more marks. The extension x of a wire is given by the expression $\mathrm{X}=\frac{F L}{E A}$, where F is the tension in the wire, L its length and A its cross-sectional area. In this question, the extension $x \propto \frac{F}{E}$. Since both F and E increase by the same factor of 1.29 , this meant that the ratio is 1.00 . The most frequent incorrect answers were 1.29 and 1.29^{-1} or 0.78 . The majority of the candidates in the upper quartile picked up 2 marks. Exemplar 7 (iii) The cables \mathbf{A} and \mathbf{B} have the same length and cross-sectional area. The material:of-cable B'has-Young modulus $1.29 E$, where E is the -Young modulus of the material of cable A. Both cables obey Hooke's law. ratio $=$ \qquad [2] This exemplar shows a response from a top-grade candidate. The solution is much more elaborate and the response of 0.996 is given to 3 significant figures. A perfect solution that earned this candidate 2 marks.
		Total	6	
4 2	i	(Sum of clockwise moments = sum of anticlockwise moments) $\begin{aligned} & 95 \times 9.81 \times 1.80 / 120 \times 9.81 \times 1.00 / \\ & 1.60 \times T \sin 30^{\circ} \end{aligned}$	C1	

3.2 Forces in Action - Equilibrium

	i	$\begin{aligned} & (95 \times 9.81 \times 1.80)+(120 \times 9.81 \times \\ & 1.00)=1.60 \times T \sin 30^{\circ} \\ & T=3.6 \times 10^{3}(\mathrm{~N}) \end{aligned}$	C1 A1	
				Note answer to 3 s.f. is $3.57 \times 10^{3}(\mathrm{~N})$
	ii	$\sigma=\frac{3.6 \times 10^{3}}{\pi \times 0.015^{2}}$	C1	Possible ECF from part (i)
	ii	$\sigma=5.1 \times 10^{3}(\mathrm{kPa})$	A1	Allow 1 mark for 5.1×10^{6}; POT error Note using $3.57 \times 10^{3} \mathrm{~N}$ gives $5.05 \times 10^{3}(\mathrm{kPa})$
	ii	The clockwise moment increases and therefore T increases.	B1	
$\begin{array}{\|l} 4 \\ 3 \end{array}$		Total	6	
	i	(For circular orbit) centripetal force provided by gravitational force (of attraction) (Gravitational / centripetal) force is along line joining stars which must therefore be diameter of circle (AW)	M1	Examiner's Comments Only a minority of candidates related the gravitational force between the stars to the centripetal force required for circular motion to occur. This candidate has written the perfect answer (exemplar 5). There were two popular insufficient answers; that if the stars were not diametrically opposite they would collide and that the centre of mass of the system had to be at the centre of the orbit. Exemplar 5 The ce.....entripetal force. orbit must we wern the line of their outer as the
	ii	$\begin{aligned} & T=20.5 \times 86400\left(=1.77 \times 10^{6} \mathrm{~s}\right) \text { and } \\ & R=1.8 \times 10^{10}(\mathrm{~m}) \\ & m=16 \times \pi^{2} \times\left(1.8 \times 10^{10}\right)^{3} / \mathrm{G} \times(20.5 \times \\ & 86400)^{2} \end{aligned}$ giving $m=4.4 \times 10^{30}$ so $m=2.2 \mathrm{M}_{\odot}$	C1	values of T and R scores first mark; both incorrect $0 / 3$ correct substitution allowing π^{2} and G $m=16 \times 9.87 \times 1.8^{3} \times 10^{30} / 6.67 \times 10^{-11} \times 1.8^{2} \times 10^{12}$ using $2 R$ gives $35.2 \times 10^{30}=17.6 \mathrm{M}_{\odot}$ or using $\mathrm{T}=1$ day gives 1850 $\times 10^{30}=930 \mathrm{M}_{\odot}$ award $2 / 3$ Examiner's Comments This question tested the candidates' ability to interpret and substitute data into an elaborate formula and then evaluate it. The most common error was to write the formula with the correct substitutions but then to omit the square symbol against T . Candidates should be encouraged to consider whether their

				answers are reasonable before moving on to the next question. In the calculation (exemplar 6) shown here, is it possible that these stars could be four million times the mass of the Sun? The correct answer of 2.2 Sun masses seems very plausible and should give candidates confidence. Exemplar 6 1 day $=86400$ s
	$\begin{gathered} i i \\ i \\ \hline \end{gathered}$	$\begin{aligned} & v=2 \pi R / T=2 \times 3.14 \times 1.8 \times 10^{10} / 1.8 \times \\ & 10^{6} \\ & \left(\text { giving } v=6.3 \text { or } 6.4 \times 10^{4}\right) \\ & \Delta \Lambda=(v / c) \lambda=(6.3 / 3) \times 10^{-4} \times 656= \\ & 0.14(\mathrm{~nm}) \end{aligned}$	C1	do not penalise repeated error for R or T ecf for incorrect v , gives $\Delta \lambda=\mathrm{v} \times 2.2 \times 10^{-6}$ $\Delta \Lambda=0.28$ for $2 R ; \Delta \lambda=2.9$ for 1 day and $\Delta \lambda=5.7$ for both incorrect Examiner's Comments Most of the higher performing candidates completed this problem successfully. Two common errors among the remainder were to equate the formula for central force gravitational potential energy ($G M m / r$) to kinetic energy to find a value for the speed of the stars and to rewrite incorrectly metres in powers of 10 in nanometres.
		Total	7	
4	i	$\begin{aligned} & \frac{61000}{3600}=16.944 \\ & 17 \mathrm{~ms}^{-1} \end{aligned}$	M1 A0	Note v must be the subject Examiner's Comments This question was the first 'show' question of the paper. It is important that candidates show clearly their working. In this case it was expected to see 61 multiplied by 1000 and divided by 3600 . Most candidates came up with an answer of 16.9.
	ii	$\begin{array}{ll} \mathbf{1}^{\frac{1}{2} \times 1.9 \times 10^{5} \times 17^{2}} \\ 2.7(5) \times 10^{7}(\mathrm{~J}) & \\ 0=17^{2}+2 a \times 310 & \text { OR } t=\frac{310}{8.5} \\ 2 a=(-) \frac{17^{2}}{2 \times 310}=(-) \frac{289}{620} & \text { OR } a=\frac{17}{36.5} \\ 0.47\left(\mathrm{~ms}^{-2}\right) & \end{array}$	C1 A1 C1 C1 A1 A	Allow use of 16.9 gives $2.7 \times 10^{7}(\mathrm{~J})$ Allow $v^{2}=u^{2}+2$ as with values stated correctly Ignore negative sign Allow use of 16.9 gives 0.46 Not 0.5 Allow ECF from (b) (ii) 1 and (b) (ii) 2

3.2 Forces in Action - Equilibrium

				"faster" deceleration. Some candidates correctly answer this question in terms of the kinetic energy being transferred to an increase in gravitational potential energy. Few candidates were precise in discussing the component of the weight parallel to the incline.
	Total	10		

